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SUMMARY

A unique modification to the NASTRAN solution sequence for transient
analysis with direct time integration (COSMIC NASTRAN rigid format 9) has been
developed and incorporated into a DMAP alter. This DMAP alter calculates the
buckling stability of a dynamically loaded structure, and is used to predict
the onset of structural buckling under stress-wave loading conditions. The
modified solution sequence incorporates the linear buckling analysis capability
(rigid format 5) of NASTRAN into the existing Transient solution rigid format
in such a way as to provide a time dependent eigensolution which is used to
assess the buckling stability of the structure as it responds to the impulsive
load. As a demonstration of the validity of this modlfied solution procedure,
the dynamic buckling of a prismatic bar subjected to an impulsive longitudinal
compression is analyzed and compared to the known theoretical solution. In
addition, a dynamic buckling analysis is performed for the analytically less
tractable problem of the localized dynamic buckling of an initially flawed com-
posite laminate under transverse impact loading. The addition of this DMAP
alter to the transient solution sequence in NASTRAN facilitates the computa-
tional prediction of both the time at which the onset of dynamic buckling
occurs in an impulsively loaded structure, and the dynamic buckling mode
shapes of that structure.

INTRODUCTION

Composite laminates that are subjected to static, dynamic, or fatigue
loading are known to undergo delamination, or debonding, between the laminated
plies of which they are composed. Delamination causes a significant loss
stiffness and strength, and can considerably reduce the structural integrity
of a laminate. Once this damage has occurred, a compressive stress near the
delamination can induce local buckling of the delaminated plies. This buck-
ling may then cause further extension of the delamination and progressive wea-
kening of the laminate. In lieu of actual experimental testing, the ability
to computationally predict the onset of delamination buckling is necessary for
evaluating the durability of many composite structures.

The delamination buckling phenomenon has been observed experimentally
under both static and fatigue loading conditions (Refs. 1 to 4), and several
analytical and numerical methods have been proposed (Refs. 5 and 6) to model
this damage mechanism. Finite-element approaches (Refs. 7 to 9) have been
used as the basis for these analyses, but no comparable numerical methods exist
to analyze delimination buckling which occurs as a result of an impulsively
applied load. That is the topic of this paper.



Experimental observations of dynamic delamlnatlon buckling in transversely
impacted laminates were reported earlier (Refs. lO to 12), using high-speed
photography and simultaneous strain measurementsof transversely impacted lami-
nates. A related numerical analysis (Ref. lO) indicated that the buckling
behavior must be accounted for in the computational model in order to accu-
rately assess the damagetolerance capabillty of the laminate. This motivated
the present development of a NASTRANDMAPalter analysis procedure that can
be used to computationally predict the onset of buckling instability under
transient stress-wave loading.

The objectives of this paper are, therefore, (I) to outline the dynamic
buckling analysis computational procedure and its implementation into the DMAP
alter sequence (2) demonstrate the validity of the dynamic buckllng analysis
procedure by analyzing a simple one-dimensional example problem with a known
solution, and (3) apply the dynamic buckling analysis to the analytically less
tractable problem of the localized dynamic buckling of an initially flawed
composite laminate under transverse impact loading.

The NASTRANtransient solution sequence, whenmodified as indicated in
the following section, provides a new computational tool that can be used to
predict both the time at which the onset of dynamic buckling occurs and the
dynamic buckling modeshapes of an impulsively loaded structure.

DynamicBuckling Analysls

Linear buckling analysis requires solution of the elgenvalues problem:

[K] + X[K ] {¢} = O]O
(1)

where

[K] structural stiffness matrix;

[K a] stress stiffness matrix

X, {¢} denote the associated eigenvalue and eigenvector

In terms of the buckling analysis, the eigenvector {¢} represents the
buckling mode shape, and the associated eigenvalue X indicates the multiple
of [K o] needed to make equation (I) singular, that is, to cause buckling. In
a one-dimensional column buckling problem, each scalar elgenvalue satisfylng
equation (I) physically represents the nondlmensional ratio:

oAX-
P, (2)

where o
area, and

of unity

is the compressive stress in the column, A is the cross-sectional

P, is the buckling load. If the eigenvalue has the critical value

(oA = P,), buckling in the associated mode occurs.

In the dynamic case, the terms of [Ka] in Eq. (1) vary with time as the
stress waves propagate through the structure. The eigensolutlon of (1) then



becomes time dependent, and can be used to track the buckling stability as a
function of time. Figure I is a simplified representation of a modified
direct-time integration solution sequence in which the updated stress stiffness
matrix is formed after each time step At, and the associated eigenvalue prob-
lem in equation (I) is solved. The eigenvalue is now a function of time, and
it indicates the onset of buckling when it reaches the critical value of unity.
Figure 2 is the DMAP alter which incorporates this dynamic buckling algorithm
into the existing transient solution sequence.

DMAP Procedure

The functions of the DMAP statements shown in Fig. 2 are summarized
here. In line 2 the number of columns in the UPV matrix is determined. This
matrix contains the displacement, velocity and acceleration vectors for each
degree of freedom at each time step. Lines 2 through 16 follow the Bubble
Algorithm approach of Ref. 13. The DMI column matrices TIP1 and BASI from the
Bulk Data deck, each initially sized to contain more rows than columns in the
UPV matrix, are used to form two new column matrixes, MNTRJ and BOOTI. The
number of rows in each of these matrices is equal to the number of columns in
the UPV matrix. The monitor matrix MNTRJ initially contains unity in the
first row and zero in the remaining rows. The BOOTI matrix always contains
unity in the last row and zero in the remaining rows.

Having determined the size of the partitioning matrices, the elgenvalue
extraction data is determined in line 19 and the buckling calculations are now
performed. At the beginning of each pass through the RAALOOP, corresponding
to each integration time step of the requested output, the current column
position is compared with the number of columns in the UPV matrix, lines 25
through 27, ending the loop at the end of the available data. Continuing
within the loop the unity value of the MNTRJ matrix is advanced three rows,
lines 28 through 31, pointing to the location of the current displacement
vector in the UPV matrix. The MNTRJ matrix is used to partition the UPV
matrix, line 32, stripping the column containing the displacements. These
displacements are used in the DSMGI module, line 33, to form the time-varying
global differential stiffness matrix, KDGG. The reduced differential stiff-
ness matrix, KDAA, is then formed by eliminating the restrained and dependent
degrees of freedom, line 35 through 45, and in line 47 this matrix is multi-
plied by negative one, forming the KDAAM matrix. The stiffness matrices KAA
and KDAAM are then used in the READ module, line 48, to solve for the eigen-
values and eigenvectors for each integration time step initially requested for
output.

The eigenvalue for each time step is printed by line 52. Optionally,
lines 53 and 54 may be used to print eigenvalues and elgenvalue extraction
data. Line 58 may be used to print eigenvectors. The RAALOOP is ended at
line 64.

The computationally intensive nature of this analysis can be made more
efficient by slightly modifylng the DAMP procedure. A promising method is to
perform the buckling analysis at specified time intervals in the transient
solution sequence rather than after every time step, as is done here. The
length of the time interval can be progressively decreased as the eigenvalue
begins to change more rapidly, or as the crltical value of unity is approached.



This technique will significantly reduce the number of indlvldual buckling
analyses performed, and hence will result in a more computatlonally efficient

algorithm.

Example Problem

In order to establish the validity of this analysis procedure, a simple

problem with a known solution, as given in Ref. 14, was analyzed. The propaga-

tion of a longitudlnal compressive pulse in a long prismatlc bar, shown in

Fig. 3, was modelled•

Assuming a one-inch diameter aluminum bar of uniform circular cross sec-

tion the elastic and geometric constants are"

E = lO x lO6 psi (3)

I = _r 4 = _ in
4

4 64
(4)

A = _r 2 : _ in
2

4
(5)

p = 2 5x]O-4 lb • s2
• 4

in.

• (6)

L : lO0 in. (6)

where E is the Young's Modulus, I is the area moment of Inertla, A is the

cross-sectional area, p is the mass density, and L is the length of the bar.

The lowest buckling load is given by (Ref. 15)"

P, = _2EI = 121 Ib

4L2

(7)

As shown in Fig. 3, the applled load is identical to the static buckling load

in Eq. (7).

Using the above material constants, the bar wave velocity is given by
(Ref. 14)"

Co =_F= 200,000 secin--
(8)

so the time for the longitudinal compression wave to travel from the impact
point to the distal end of the bar is

L

t o - Co - 500 ps (9)
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A NASTRAN model consisting of ten rod elements, for a total of ten uncon-
strained a×ial degrees of freedom, was used to model the longitudinal impact
of the bar. The integration time step was taken as

I L
At _ 4 lOC - 12.5 I_S

0
(10)

to insure a numerically converged solution. The propagation of the compres-
sion wave from the point of impact to the clamped end of the bar is depicted
in Figs. 4(a) and (b).

The compressive pulse, traveling at a speed Co , reaches the complete
length of the bar at time t o (500 ps). Because the distal end of the bar is
held fixed, the incident compressive pulse reflects (Ref. 15) as a pulse of
the same sign (compressive) which superimposes on the existing uniform compres-
sive stress in the bar. Figures 4(c) and (d) depict the progression of the
reflected pulse, traveling at a speed Co , back to the proximal end of bar,
effectively doubling the compressive load supported by the bar. Reflectlng
from the proximal (free) end as a pulse of 'opposite sign (tensile) which super-
imposes on the existing compressive stress, the bar returns to its original
fully stressed state at time 3t o, (1500 ps) as shown in Figs. 4(e) and (f).
Finally, in Figs. 4(g) and (h), the tensile pulse reflects as a tensile pulse
from the fixed end which temporarily cancels the uniform compression at time
4t o (2000 ps), leaving the bar instantaneously unstressed. The stress states
depicted in Figs. 4(i) and (j), for all practical purposes identical to those
in Figs. 4(a) and (b), indicate that, assuming no damping exists, the above
cycle will repeat itself indefinitely.

The corresponding time dependence of the lowest elgenvalue is shown in
Fig. 5. The critical value of 1.0 is reached at times t o , 3t o, 5t o, 7to,.
(500, 1500, 2500, 3500 ps,. .); and whenever the bar supports a uniform com-
pressive stress corresponding to its buckling load. Similarly, the eigenvalue
reaches to its lower limit of 0.5 at times 2t o, 6t o, lOto,. (I000, 3000,
5000 ps,. .); and whenever the stress state is double that of the buckling
load. The eigenvalue becomes large (theoretically infinite) at time O, 4t o,
8to,. (0, 2000, 4000, 6000 ps,. .) ; and whenever the bar is unstressed.

Superimposed on the finite element results in Fig. 4 is the theoretical
I-D solution, assuming the stress wave propagates nondisperively at a constant
speed Co and reflects from the boundaries as described above. Good agree-
ment exists between the two solutions, even when relatively few finite ele-
ments are used to model the bar. The time behavior of the lowest eigenvalue,
shown in Fig. 5, can be interpreted directly in terms of the transient stress
distribution in Fig. 4. Since the applied compressive load is exactly equal
to the first static buckling load in Eq. (7), and no strain-rate dependence
was assumed in the finite element model, buckling is predicted whenever the
bar is uniformly stressed with its critical static buckling stress, which
occurs at odd multiples of t o , as shown in Fig. 4.

In a practical application, the above analysis is valid only until the
onset of buckling occurs, since no post-buckling behavior has yet been included
in the finite element model. The time itegration was extended in the example
problem only to physically interpret the results of the dynamic buckling
analysis.



Dynamic Delamination Buckling

The example problem could have been solved without the use of a finite

element analysis because of the simple non-dispersive nature of the longitudi-

nal wave propagation. However, the propagation of flexural waves in beam-llke
structures is dispersive by nature, and as such would pose a formidable chal-

lenge without the use of some type of computational simulation. In Ref. II,
experimental measurements of delamination duckling in graphlte/epoxy composite

laminates were reported. The beam-like experimental specimens had simulated

delaminations (ply disbonds) embedded in them during the fabrication process.

They were held clamped at both ends and impacted transversely, as depicted

schematically in Fig. 6. The subsequent flexure-induced local buckling of the

delamination was recorded using strain gages and high speed photography. A

finite element model of the initially flawed experimental specimen is used

here to verify that the dynamic delamination buckling phenomenon can be pre-

dicted using computatlonal simulation. Figure 6 shows the geometry and loading
conditions for the initially flawed composite laminate subjected tQ a trans-

verse impact. The finite element dlscretizatlon of this laminate near the

embedded flaw is shown schematically in Fig. 7. The layered structure of the

composite laminate is represented by layers of shell elements. Multipolnt con-

straints are imposed on the degrees of freedom between neighboring nodal points

in the thickness direction such that simple beam bending displacements are

enforced; that is, plane sections remain plane and no strain exists in the

thickness direction. These constraints are removed in the delamlnated region
to allow the delamlnated plies to separate from the main laminate when a local

compression occurs in that area, as shown in Fig. 7. More complete detalls of
the finite element modeling procedure are given in Ref. 12.

The progression of the flexural waves out from the central impact point

to the boundaries of the laminate are shown in Fig. 8. As the disturbance

passes through the flawed region at lO0 to 150 ps after impact, the delaminated

ligament separates from the laminate and begins to support a compressive longi-

tudinal stress which increases in magnitude until it causes a local buckling

of the delamination. The eigenvalue behavior and corresponding buckling mode

are shown in Fig. 9. As the laminate deforms under the applied load, the

eigenvalue decreases monotonically in magnitude until it reaches the critical

value of unity, indicating the onset of buckling at approximately 190 ps from

impact. The corresponding buckling mode shape is also depicted in the figure.

These results correspond closely with experimental observations. Both

the buckling mode shape and the time at which buckling occurs are in good

agreement with measurements taken from high speed photographs. A detailed com-

parison of flnite element results and experimental measurements is given In
Ref. II.

CONCLUSIONS

A dynamic delamination buckling analysis procedure has been incorporated,

in the form of a DMAP alter, into the transient analysis rigid format of

NASTRAN. With this enhancement, NASTRAN can be used to calculate the time at

which dynamic buckling occurs and the buckling mode shape of a structure sub-

jected to dynamic 1oadlng. Comparison of the calculated results with a known



solution supports the validity of the analysis. Applicatlon of the dynamic
buckling analysis to the more complex problem of transverse impact of beam-
like laminate was demonstrated, and the results phenomenological]y duplicated

those reported in earlier experiments.
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ALTER 1_6 $$$$$ COSMIC NASTRAN RF 09 RELEASE 1987 $$$$$
PARAML UPV//WTRAILER_/I/V,N,NOCUPV $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
COPY TIPI / CLUSI/ 0 $ $
COPY TIPI / BUBLI/ 0 $ $

05 PARAM //WSUBW/SHIFT/NOCUPV/ i $ $
LABEL BUBTOP $<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<$ BUTLER/PAMIDI $
FILE BUBLI=SAVE/ CLUSI:SAVE $ $ $
PARTN BUBLI,,BAS1/DUMMY,,,/7 $ $ BUBBLE $
MERGE DUFIMY, .... TIP1/BUBLJ/7 $ $ $

10 ADD CLUSI,BUBLJ/CLUSJ/ $ $ ALGORITHM $
SHITCH BUBLJ,BUBLI//-1 $ $ $
SHITCH CLUSJ,CLUSI//-1 $ $ $
REPT BUBTOP,SHIFT $>>>>>>>>>>>>>>>>>>>>>>>>>>>>$ $
PARTN TIPI,,CLUSJ/,MNTRI,,/7 $ $

15 PARTN BUBLJ,,CLUSJ/,BOOTI,,/7 $ $
COPY MNTRI/HNTRJ/ 0 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
TA1 ECT,EPT,BGPDT,SIL,GPTT,CSTM,/X1,XZ,X3,ECPTsGPCT,,,/LUSET/

HOSIMP/O/NOGENL/GENEL $
DPD DYN_MICS,GPL,SIL,USET/GPLD,SILD,USETD,,,,,,,EED,EQDYN/V,N,

20 LUSET/V,N,LUSETD/V,N,NOTFL/V,N,NODLT/V,H,NOPSDL/V,N,NOFRL/
V,N,NONLFT/V,N,NOTRL/S,N,NOEED/C,N,123/V,N,NOUE $

COND ERROR5,NOEED $
PARAM //WNOPW/V,N,COLNUM=I $
LABEL RAALOOP $<<<<<<<<<<<<<<< TOP OF RAALOOP <<<<<<<<<<<<<<<<$

25 PARAM //XADDW/COLNUM/COLNUM/3 $ $
PARAM //_LEW/V,N,GETOUT/NOCUPV/COt.NUM $ $
CORD QUITRAA,GETOUT $ $
LABEL CORTOP $<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<$ $
PARTN MNTRJ,,BOOTI/DUHII,,,/7 $ MOVE THE COLUMN MARKER $ $

30 HERGE DUMll,,,,,MNTRI/MNTRJ/7 $ THREE PLACES $ $
REPT CORTOP, 2 $>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>$ $
PARTN UPV,HNTRJ,/,,COLUPV,/I $ $
DSMG1 CASECC,GPTT,SIL,EDT,COLUPV,CSTM,MPT,ECPT,GPCT,DIT/

KDGG/DSCOSET $ $
35 EQUIV KDGG,KDNN/HPCF2 $ $

COND LBL2D,MPCF2 $ $
MCE2 USET,GM,KDGG,,_/KDNN,,, $ $
LABEL LBL2D $ $
EQUIV KDNN,KDFF/SINGLE $ $

_0 CORD LBL3D,SIHGLE $ $
SCE1 USET,KDNN,,,/KDFF, KDFS,,,, $ $
LABEL LBL3D $ $
EQUIV KDFF,KDAA/OMIT $ $
COND LBL5D,OMIT $ $

_5 SMPZ USET,GO,KDFF/KDAA $ $
LABEL LBL5D $ $
ADD KDAA,/KDAAM/C,N,(-I.0,O.O)/C,N,(O.O,O.O) $ $
READ KAA,KDAAM,,,EED, USET,CASECC/LAMA,PHIA,MI,OEIGS/C,N,BUCKLING/

S,N,NEIGV/C,N,2 $" $
50 COND ERROR4,NEIGV $ $

PARAML LAMAI/_DTIX/2/3/V,N,EIGV $ $
PRTPARM //O/wEIGV_ $ $
$OFP OEIGS,LAMA,,,,//S,N,CARDNO $ $
$OFP LAMA,,,,,//S,N,CARDNO $ $

55 SDRI USET,,PHIA,,,GO,GM,,KFS,,/PHIG,,BQG/C,N,I/C,N,BKL1 $ $
SDR2 CASECC,CSTM,HPT,DIT,EQEXIN,SIL,,,BGPDT,LAMA,BQG,PHIG,EST,,/,

OBQGI,OPHIG,OBESI,OBEFI,PPHIG/C,N,BKLI $ $
$OFP OPHIG,OBQGI,0BEFI,OBESl,,//S,N,CARDNO $ $
COND P3,JUMPPLOT $ $

60 PLOT PLTPAR,GPSETS, ELSETS,CASECC, BGPDT,EQEXIN,SIL,,PPHIG ,GPECT,OBES1/
PLOTXS/V,N,NSIL/V,N,LUSET/V,N,JUMPPLOT/V,N,PLTFLG/S,N,PFILE $

65

7O

PRTHSG PLOTX3 // $
LABEL P3 $
REPT RAALOOP,IO00 $>>>>>>>
JUHP QUITRAA $
LABEL ERROR5 $
PRTPARM //C,N,-3/C,N,BUCKLING $
JUMP QUITRAA $
LABEL ERROR_ $
PRTPARM //C,N,-Q/C,N,BUCKLING $
LABEL QUITRAA $
JUMP FINIS $
ENDALTER

BOTTOM OF RAALOOP

$
$

>>>>>>>>>>>>>>>>$

BULK DATA
DMI TIPI 0 Z 1 I
DMI TIP1 i I 1.0
DMI BASI 0 2 i I
DMI BASI I I000 1.0

I000 I

I000 I

FIGURE2. - DYNAMICBUCKLINGI_tAPALIERFORTRANSIENTSOLUTIONSEQUENCE.
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